
Scalable Multi-objective Optimization in
Programmatic Advertising via Feedback Control

In the proceedings of the 60th IEEE Conf. on Decision and Control, Austin, Texas, USA, December 13-15, 2021

Niklas Karlsson1

Abstract— The majority of online advertising is served
through real-time bidding, and advertising campaigns are often
defined as optimization problems. This paper deals with adver-
tiser profit maximization subject to multiple advertiser perfor-
mance constraints. The optimal bidding mechanism for a large
family of multi-constrained advertising problems is derived,
and it is demonstrated how the solution can be implemented as
three separate subsystems; dealing with impression valuation,
campaign control, and bid shading optimization, respectively.
Feedback control plays a critical role to make this optimization
scalable and adaptive. A proof of concept campaign control
system is proposed and evaluated in simulations.

I. INTRODUCTION

Optimal bidding for ad impressions is at the heart of online
advertising, which is a large and rapidly growing industry.
Feedback control is an essential part of the solution because
of the extremely high dimensionality of the problem and the
uncertain and dynamic nature of the environment.

A Demand Side Platform (DSP) serves as the middleman
between an advertiser and one or more open exchange
trading impressions, where an impression is the view of
one ad. The DSP value proposition is to provide optimal
bidding on behalf of the advertiser. It used to be enough
to maximize the number of clicks or conversions while
satisfying a spend constraint. However, the demands from
advertisers keep increasing. Today advertisers often have
additional constraints on their ad campaigns leading to a
variety of multi-objective optimization problems, which is
the subject of this paper.

Constrained optimization of display advertising in itself is
not new. For example, optimal bidding for publisher revenue
maximization in [1], [2] is defining a problem similar to what
is considered in this paper. Their goal is to maximize the rev-
enue subject to campaign budget and supply inventory con-
straints, but in their work the demand landscape is assumed
partially or fully known. Strict advertiser optimization with
limited knowledge of the competitive landscape is dealt with
in [3], [4]; however, the solved problems involve particularly
simple constraints and make significant assumptions on the
environment.

A subproblem of ad optimization is to estimate event
rates such as click-through rate (CTR) and conversion rate
(CVR). This has received attention since the dawn of online
advertising, and remains an active research area, e.g. [5],
[6], [7] and many others. Another important and established
subproblem is to adjust the bids based on error feedback
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to satisfy budget and performance constraints [8], [9], [10],
[11], [12]. A third subproblem, which in recent time has
gained attention due to an industry trend towards a first price
cost model, is bid shading optimization [13], [14], [15], [16].

Our contribution is the optimal bidding mechanism for a
large family of multi-constrained advertising problems under
a first and second price cost model for the traded goods,
and a proof of concept feedback control system to solve
the campaign control subproblem of the overall optimization
problem. It is demonstrated how the bid calculation lends
itself to a decoupled implementation involving three separate
and scalable systems; dealing with impression valuation,
campaign control, and bid shading optimization, respectively.
The bidding mechanism is derived using Lagrangian tech-
niques together with probabilistic tools. The control system
plays a critical role in the implementation of the optimization
system, and enables a scalable and optimal solution. To
prove the concept, the multiple-input, multiple-output control
system is implemented as separate single-input, single-output
pure integral (I) error feedback controllers and evaluated in a
noise-free simulated scenario. The closed-loop performance
is according to intuition and theory and serves as a bench-
mark test case.

The paper is organized as follows. Section II introduces
key notation while Section III defines the problem that is
solved later. Some definitions and preliminary results are
provided in Section IV. The key contribution and the optimal
bidding mechanism is presented in Section V. Section VI
elaborates on how to implement the solution with a feedback
controller. The result is made clear with help of an example
in Section VII, and conclusions plus ideas of future work are
discussed in Section VIII.

II. SET-UP AND NOTATION

The goal is to solve a constrained optimization problem
via real time bidding on impressions on behalf of one specific
ad campaign. Each impression is awarded to the highest
bidder, and the winning bidder is charged according to a first
or second price cost model [17]. The cost model is known
before the bids are submitted, and for a first price impression
the winner pays an amount equal to its own bid, whereas for
a second price impression the winner pays an amount equal
to the second highest bid. Notation and assumptions used
extensively in the paper are listed below:
• The set of all impression opportunities is denoted Ω,

and subsets Ω1 and Ω2 are impression opportunities
sold based on a first and second price cost model,
respectively. Let Ω1 ∩ Ω2 = ∅ and Ω1 ∪ Ω2 = Ω.



• The uppercase of a Roman letter denotes a random
variable, while a lowercase represents its expected value
(future event) or realization (historical event).

• The bid price bi, i ∈ Ω, is the bid amount submitted to
the auction for the ith impression opportunity on behalf
of the represented advertiser, and is a decision variable
of the optimization problem.

• The context of impression opportunity i is information
available to the bidder to be used to calculate a bid. It
may include e.g. the website and placement of the ad,
the type of devise where the impression request origins,
and various demographic information about the user.

• The highest competing bid of impression i is a random
variable B?

i ∈ R>0, and b?i denotes its realized value.
• The cumulative distribution function (CDF) of B?

i ,
given the context, is FB?

i
(b), while the probability

density function (PDF) is fB?
i
(b) = dFB?

i
(b)/db, which

is assumed to be continuous. See Figure 1 for a few
examples of CDFs.

Fig. 1. Seven sample CDFs: 1) The black curve is available to an oracle
and indicates a perfect a priori knowledge of the highest competing bid,
2) the green curves are log-concave functions with nice properties that are
exploited later, and 3) the red curves are general not log-concave functions.

• The ith impression is awarded to us if bi ≥ b?i
• The ad cost Ci of an awarded impression i is

Ci = biI{i∈Ω1} +B?
i I{i∈Ω2}, (1)

where IA is the indicator function satisfying IA = 1,
if A = true, and IA = 0, otherwise. Note, Ω2 is the
complement of Ω1, hence Ci = bi or Ci = B?

i .
• The event count Nj,i ∈ N is the number of events

of type j following an awarded impression. Examples
of event types are impressions, clicks, and conversions
(product sales). Furthermore, the impression value Vi ∈
R>0 is the advertising value attributed to the ith im-
pression, if awarded. It encodes the branding and/or
performance value, and is typically a function of one
or more of the event counts.

• The total number of j-events, Nj , the total value, V ,
and the cumulative ad cost, C, are

Nj =
∑
i∈Ω

Nj,iI{bi≥B?
i }, j = 1, . . . ,m, (2)

V =
∑
i∈Ω

ViI{bi≥B?
i }, and (3)

C =
∑
i∈Ω1

biI{bi≥B?
i } +

∑
i∈Ω2

B?
i I{bi≥B?

i }. (4)

• The total profit is the difference between total value and
cumulative ad cost, hence, equals V − C.

• The expected impression value and event count, given
the context, are EVi = vi and ENj,i = pj,i (breaking
from the convention that suggests the notation nj,i).
Event type j = 1 is without loss of generality an
impression, which implies that p1,i = 1, for all i ∈ Ω.

• The event count Nj,i and B?
i , as well as, the impression

value Vi and B?
i are assumed conditionally independent,

given the context of the impression.
Finally, without explicitly mentioning it later, all expected
values throughout the paper are conditioned on the context.

III. PROBLEM FORMULATION

The objective is to compute the bids bi, for all i ∈ Ω,
that maximize the expected total profit, EV −EC, subject to
constraints on total spend, effective cost per event (eCPX),
and events per impression rate (ER). Constraints are defined
by non-negative parameters ξ1, ξ2,j , ξ3,j and the problem is
mathematically defined by

maximize
{bi ∈ R|∀i ∈ Ω}

EV − EC (5)

subject to

EC ≤ ξ1 (spend) (6)
EC ≤ ξ2,jENj (eCPX, j = 1, . . . ,m) (7)

ξ3,jEN1 ≤ ENj (ER, j = 2, . . . ,m) (8)

The cardinality of Ω is in the order of millions or bil-
lions, which makes the problem extremely high-dimensional.
Moreover, the cardinality of Ω, the impression values vi,
the event rates pj,i, and the competing bid prices b?i are a
priori unknown. Finally, the impression opportunities occur
over time, not all at once, which is exploited in Section VI.
Typically, an advertiser prescribes the constraints on a per
day basis (a spend budget ξ1 per day, etc.)

IV. PRELIMINARIES

Define constraint vector ξ̄, impression value vector v̄i,
Lagrange multiplier vector λ̄, and control signal vector ū as

ξ̄ :=
[
ξ1 ξ2,1 · · · ξ2,m ξ3,2 · · · ξ3,m

]T
,

v̄i :=
[
vi p2,i p3,i · · · pm,i

]T
,

λ̄ :=
[
λ1 λ2,1 · · · λ2,m λ3,2 · · · λ3,m

]T
,

ū :=
[
u0 uv u2 · · · uj · · · um

]T
,

where the elements of λ̄ and ū are defined in Section V.
Vector ξ̄ contains the constraints imposed by the adver-

tiser. These are typically entered by humans and change
infrequently. They are known and can often be viewed as
constants. Vector v̄i consists of quantities such as impression
value, click-through-rate, and various conversion-rates. These
are typically known only as estimates and differ widely from
one impression opportunity i to the next. Furthermore, vector
λ̄ is composed of multipliers, which in an implementation
are used as tuning knobs and adjusted gracefully over time
toward their optimal values for which the constraints are
satisfied. Finally, vector ū is a rational static function of ξ̄
and λ̄ that facilitates an efficient real time bid computation.

The following results are used later.



Lemma 4.1:

E(I{bi≥B?
i }) = FB?

i
(bi) (9)

E
(
B?

i I{bi≥B?
i }
)

= biFB?
i
(bi)−

∫ bi

0

FB?
i
(z)dz (10)

Proof: (I) Identity (9) is obtained from E(I{bi≥B?
i }) =∫∞

−∞ I{bi≥z}fB?
i
(z)dz =

∫ bi
−∞ fB?

i
(z)dz = FB?

i
(bi).

(II) Identity (10) is obtained via integration by parts
from E

(
B?

i I{bi≥B?
i }
)

=
∫∞
−∞ zI{bi≥z}fB?

i
(z)dz =∫ bi

0
zfB?

i
(z)dz = biFB?

i
(bi)−

∫ bi
0
FB?

i
(z)dz.

V. OPTIMAL BIDDING MECHANISM

The scale of the problem, the uncertain competitive land-
scape, and the a priori unknown impression value and event
rates of each impression opportunity, makes it virtually
impossible to solve the optimization problem using a plan-
based algorithm. Instead a Lagrangian approach is adopted to
rewrite the problem as three largely independent subproblems
that are solved with scalable and adaptive methods.

The following theorem is the main result of the paper and
states the necessary conditions for optimality.

Theorem 5.1: The optimal bid bopti , for all i ∈ Ω, satisfies

bopti =


argmax
b∈[0,bui ]

(bui − b)FB?
i
(b), i ∈ Ω1,

bui , i ∈ Ω2,

whenever bui ≥ 0; and bopti = 0, if bui < 0. The adjusted
impression value bui is

bui =
vi +

∑m
j=1 pj,iξ2,jλ2,j +

∑m
j=2(pj,i − ξ3,j)λ3,j

1 + λ1 +
∑m

j=1 λ2,j
, (11)

and where inequalities (6)-(8) hold, as well as, λ1(EC −
ξ1) = λ2,j(EC − ξ2,jENj) = λ3,j(ξ3,jEN1 − ENj) = 0.

Proof: The Lagrangian of (5)-(8) is

L = EV − EC − λ1(EC − ξ1)−
m∑
j=1

λ2,j(EC − ξ2,jENj)

−
m∑
j=2

λ3,j(ξ3,jEN1 − ENj). (12)

If there exists bi, ∀i ∈ Ω, and λ1, λ2,j , λ3,j ≥ 0, ∀j,
such that the bi’s maximize L, the inequalities (6)-(8) are
satisfied, and λ1(EC − ξ1) = λ2,j(EC − ξ2,jENj) =
λ3,j(ξ3,jEN1 − ENj) = 0; then, due to the Lagrangian
sufficiency theorem [18], these values of bi solve (5)-(8).

For fixed values of λ1, λ2,j , and λ3,j , for all j, we compute
the optimal values of bi. Collect all terms of EV , EC, EN1,
and ENj in (12), and rewrite the Lagrangian as

L = EV −

(
1 + λ1 +

m∑
j=1

λ2,j

)
EC + λ1ξ1

+

(
λ2,1ξ2,1 −

m∑
j=2

λ3,jξ3,j

)
EN1 +

m∑
j=2

(λ2,jξ2,j + λ3,j)ENj .

(13)

Random variables Nj,i and Vi are by assumption (see
Section II) conditionally independent of B?

i , given the con-
text; hence, E(Nj,iI{bi≥B?

i }) = E(Nj,i)E(I{bi≥B?
i }) and

E(ViI{bi≥B?
i }) = E(Vi)E(I{bi≥B?

i }). Since ENj,i = pj,i
and EVi = vi, it follows from (2)-(4) that

ENj =
∑
i∈Ω

pj,iE
(
I{bi≥B?

i }
)
,

EV =
∑
i∈Ω

viE
(
I{bi≥B?

i }
)
,

EC =
∑
i∈Ω1

biE
(
I{bi≥B?

i }
)

+
∑
i∈Ω2

E
(
B?

i I{bi≥B?
i }
)
.

Use Lemma 4.1 to rewrite these expected values as

ENj =
∑
i∈Ω

pj,iFB?
i
(bi),

EV =
∑
i∈Ω

viFB?
i
(bi),

EC =
∑
i∈Ω

biFB?
i
(bi)−

∑
i∈Ω2

∫ bi

0

FB?
i
(z)dz.

Plug in the derived expressions for ENj , EV , and EC into
the Lagrangian (13), and gather all terms of FB?

i
(bi) and∫ bi

0
FB?

i
(z)dz. We obtain

L =
∑
i∈Ω

vi +

m∑
j=1

pj,iξ2,jλ2,j +

m∑
j=2

(pj,i − ξ3,j)λ3,j

−
(

1 + λ1 +

m∑
j=1

λ2,j

)
bi

FB?
i
(bi)

+

(
1 + λ1 +

m∑
j=1

λ2,j

) ∑
i∈Ω2

∫ bi

0

FB?
i
(z)dz + λ1ξ1.

(14)

To save space, introduce helper functions g0(v̄i, ξ̄, λ̄) and
g1(λ̄) defined by

g0(v̄i, ξ̄, λ̄) = vi +

m∑
j=1

pj,iξ2,jλ2,j +

m∑
j=2

(pj,i − ξ3,j)λ3,j (15)

and

g1(λ̄) = 1 + λ1 +

m∑
j=1

λ2,j . (16)

Substitute for g0(v̄i, ξ̄, λ̄) and g1(λ̄) in (14) to obtain

L =
∑
i∈Ω

(
g0(v̄i, ξ̄, λ̄)− g1(λ̄)bi

)
FB?

i
(bi)

+g1(λ̄)
∑
i∈Ω2

∫ bi

0

FB?
i
(z)dz + λ1ξ1. (17)

All Lagrange multipliers are non-negative, hence g1(λ̄) >
0. Moreover, the adjusted impression value, as defined
in (11), can be written as bui = g0(v̄i, ξ̄, λ̄)/g1(λ̄). A simple
rearrangement of (17) then yields

L = g1(λ̄)
∑
i∈Ω

(
(bui − bi)FB?

i
(bi)

+

∫ bi

0

FB?
i
(z)dzI{i∈Ω2}

)
+ λ1ξ1.



Define the expression inside the big parenthesis as the
expected surplus per bid response, si(bui , bi); i.e.,

si(b
u
i , bi) = (bui − bi)FB?

i
(bi) +

∫ bi

0

FB?
i
(z)dzI{i∈Ω2}.

(18)

Therefore

L = g1(λ̄)
∑
i∈Ω

si(b
u
i , bi) + λ1ξ1. (19)

Since g1(λ̄) > 0, the bids that maximize si(bui , bi) individ-
ually for each i also maximize L. The partial derivative of
si(b

u
i , bi) with respect to bi is obtained from (18) as

∂si(b
u
i , bi)

∂bi
= (bui − bi)fB?

i
(bi)− FB?

i
(bi)I{i∈Ω1}, (20)

where the relationship I{i∈Ω2} = 1− I{i∈Ω1} has been used.
Both fB?

i
(bi) and FB?

i
(bi) are zero if bi ≤ 0, hence, if bui ≤

0, then si(bui , bi) is maximized (zero) at bopti = 0. Otherwise,
if bui > 0, consider cases i ∈ Ω1 and i ∈ Ω2, separately.

Case i ∈ Ω1: It follows from (20) that

∂si(b
u
i , bi)

∂bi

 = 0, bi < 0,
depends on FB?

i
(b), 0 ≤ bi ≤ bui ,

≤ 0, bi > bui .
(21)

Typically, no closed form expression for bopti exists if i ∈
Ω1; however, it is clear from (18) that si(bui , bi) is zero if
bi ≤ 0, non-negative if bi ∈ [0, bui ], and non-positive if bi >
bui . Hence, si(bui , bi) is maximized for a value of bi in the
interval [0, bui ]. The optimal bid satisfies

bopti = argmax
b∈[0,bui ]

(bui − b)FB?
i
(b), i ∈ Ω1. (22)

Case i ∈ Ω2: It follows from (20) that

∂si(b
u
i , bi)

∂bi
= (bui − bi)fB?

i
(bi)

{
≥ 0, bi ≤ bui ,
≤ 0, bi > bui .

(23)

Hence, si(bui , bi) is nondecreasing in bi if bi ≤ bui , and is
nonincreasing otherwise. Therefore, si(bui , bi) is maximized
in regards to bi by choosing

bopti = bui , i ∈ Ω2, (24)

which completes the proof.
Theorem 5.1 suggests that the optimization problem can

be decomposed into three subproblems, representing a three
player non-cooperative game:

1) Impression valuation: Estimate the impression value
vector v̄i for each impression opportunity.

2) Campaign control: Estimate the impression-
independent optimal Lagrange multiplier vector λ̄.

3) Bid Shading Optimization: Estimate the CDF FB?
i
(b)

and compute bopti based on bui = bui (v̄i, λ̄) and FB?
i
(b).

In practice, λ̄ is updated at discrete time points, such as
once every five minutes or one hour, while bui is computed for
each individual impression opportunity. The computations of
bui and bopti are subject to tight time constraints, and must be
completed within a few milliseconds. The following corol-
lary provides the means of making the real-time computation
of bui efficient.

Corollary 5.1: The adjusted impression value bui in The-
orem 5.1 can be expressed

bui = [1, v̄Ti ]ū,

where the elements of ū := [u0, uv, u2, . . . , uj , . . . , um]T are

u0 =
λ2,1ξ2,1 −

∑m
j=2 λ3,jξ3,j

1 + λ1 +
∑m

`=1 λ2,`
,

uv =
1

1 + λ1 +
∑m

`=1 λ2,`
,

uj =
λ2,jξ2,j + λ3,j

1 + λ1 +
∑m

`=1 λ2,`
, j = 2, . . . ,m.

Proof: The result is obtained from (11) via a trivial
rearrangement of the numerator.

Figure 2 provides a block diagram of the modularized

Fig. 2. The interconnected optimization system is enclosed in the large grey
rectangle with dynamic subsystems marked green. Campaign-level signals
are represented by ξ̄ ∈ R2m and ū ∈ Rm+1, while signals v̄i ∈ Rm,
and bui , bi, b

?
i ∈ R are defined for each individual impression opportunity.

system. The benefit of the decomposition is best appreciated
by recognizing that the impression opportunities in Ω do
not arrive all at once, but as a time series throughout
the campaign flight. Moreover, impression value vector v̄i,
control signal vector ū (via vectors λ̄ and ξ̄), and CDF
FB?

i
(bi) are unknown a priori and must be estimated online.

The output ū of campaign control is combined, for each
impression opportunity i, with an output v̄i of impression
valuation via an affine dot product bui = [1, v̄Ti ]ū. If
bui ≥ 0, then this adjusted impression value is used in
bid shading optimization to compute the final bid bi =
arg maxb∈[0,bui ] si(b

u
i , b), which is submitted to the auction.

The following two theorems capture important properties
of the bid shading subproblem that relates bopti and bui .

Theorem 5.2: The expected surplus per bid request max-
imizing bid bopti (bui ) := arg maxb∈[0,bui ] s(b

u
i , b) is a non-

decreasing function of the adjusted impression value bui .
Proof: To avoid clutter, index i, identifying a specific

impression opportunity, is omitted in the proof. Consider
cases i ∈ Ω1 and i ∈ Ω2, separately.

Case i ∈ Ω1: Consider two different adjusted impression
values bua , b

u
b ∈ R. It follows from (18) that the surplus

s(bu, b) is an affine function of bu, and that

s(bub , b
opt(bua)) = s(bua , b

opt(bua)) + (bub − bua)FB?(bopt(bua)),

s(bub , b) = s(bua , b) + (bub − bua)FB?(b),



for all b ∈ R. Assume without loss of generality that bub > bua
and let bopt(bua) > b. Then

s(bub , b
opt(bua))− s(bub , b) = s(bua , b

opt(bua))− s(bua , b)
+(bub − bua)

(
FB?(bopt(bua))− FB?(b)

)
. (25)

Consider the right hand side of (25). By definition, the
expected surplus per bid request maximizing bid for an
impression opportunity with adjusted impression value bua
is bopt(bua); i.e., no bid b generates a larger surplus when the
adjusted impression value is bua . Hence

s(bua , b
opt(bua))− s(bua , b) ≥ 0.

Moreover, by assumption, bub − bua ≥ 0, and by virtue of
FB?(b) being a CDF, it is a non-negative and non-decreasing
function of b, and since bopt(bua) > b, it follows that

FB?(bopt(bua))− FB?(b) ≥ 0.

Hence, the right hand side of (25) must be non-negative; i.e.,

s(bub , b
opt(bua))− s(bub , b) ≥ 0, bopt(bua) > b.

In other words, when the adjusted impression value is bub
(> bua), then the surplus per bid request at bid bopt(bua)
is no smaller than the surplus per bid request at any bid
b < bopt(bua). As a consequence, the surplus per bid request
maximizing bid for the impression opportunity with adjusted
impression value bub > bua must satisfy

bopt(bub ) ≥ bopt(bua).

Case i ∈ Ω2: Due to Theorem 5.1, bopt = bu, hence, bopt
is non-decreasing in bu, which completes the proof.

Theorem 5.3: If FB?
i
(b) is log-concave in the interval

(0, bui ), and bui > 0, then any local maximum of s(bui , b)
relative b ∈ (0, bui ) is a global maximum and an optimal bid.

Proof: To reduce clutter, index i is omitted in the proof.
Case i ∈ Ω1: Recall from the proof of Theorem 5.1 that

s(bu, b) = (bu − b)FB?(b) and that the maximizing b lies
between 0 and bu. Since FB?(b) is log-concave in this
interval, log(s(bu, b)) = log(bu−b)+log(FB?(b)) is defined
in (0, bu) and the sum of two concave functions. This implies
that log(s(bu, b)) is concave in the interval, and any local
maximum of s(bu, b) in the interval is a global maximum
and an optimal bid.

Case i ∈ Ω2: The result is trivial since in this case
arg maxb s(b

u, b) = bu and independent of FB?(b).
Many common probability distributions have log-concave

CDFs. This includes, but is not limited to distributions such
as gamma, log-normal, normal, and logistic. If the context
of served impressions is sufficiently granular, then one can
typically approximate FB?

i
(b) by a log-concave function (see

Figure 1), which makes bid shading optimization easier.

VI. APPLICATION

The complete solution consists of impression valuation,
campaign control, and bid shading optimization (see Fig-
ure 2). Various embodiments of impression valuation [5],
[6], [7] and bid shading optimization [13], [14], [15], [16]
are readily available in the literature, and the remainder of
this article deals with a proof of concept implementation of
campaign controller.

A. Control Problem and Plant Modeling

Consider a time-sampled implementation of the system de-
fined by equidistant time points indexed t = 1, 2, . . . , tmax;
where tmax is the number of time intervals in the optimiza-
tion window (e.g. one day). Let Ω(t), v(t), c(t), and nj(t)
denote the portion of Ω, v, c, and nj realized in time interval
t. Hence, Ω =

∑
t Ω(t), v =

∑
t v(t), c =

∑
t c(t), and

nj =
∑

t nj(t); where all summations are for t from 1 to
tmax. The values of Ω(t), v(t), c(t), and nj(t) are unknown
a priori and the latter three depend on λ̄(t), which is the
value of the Lagrange multiplier vector used, according to
Corollary 5.1, to compute the bids in the same time interval.

The objective is to adjust each element of λ̄(t)
towards the smallest possible non-negative constant
value for which the corresponding constraint among (6)-
(8) is not violated. Define error signal ē(t) =
[e1(t), e2,1(t), . . . , e2,m(t), e3,2(t), . . . , e3,m(t)]T , where

e1(t) = ξ1/tmax − c(t), (26)
e2,j(t) = ξ2,jnj(t)− c(t), j = 1, . . . ,m, (27)
e3,j(t) = nj(t)− ξ3,jn1(t), j = 2, . . . ,m. (28)

Constraints (6)-(8) are satisfied if and only if all elements of∑
t ē(t) are non-negative. Campaign controller achieves this

by updating λ̄(t) based on constraint vector ξ̄ and campaign
feedback ȳ(t) := [v(t), c(t), n1(t), · · · , nm(t)]T ∈ Rm+2.
The value of ē(t) for each individual time point is not
relevant. In fact, sometimes it is important to allow ē(t) to
fluctuate over time in order for λ̄(t) to converge towards a
constant. See e.g. [12] where feedforward control is used
to distribute a daily spend budget throughout the day to
make the convergence of the control signal and the Lagrange
multiplier possible.

The plant is defined by the map λ̄(t) 7→ ē(t); which in
real applications is nonlinear, dynamic, time-varying, and
stochastic [12]. Typically, the plant is approximately diagonal
and linear in a neighborhood of each operating point. Refer
to ā := diag(∂ē/∂λ̄) evaluated at each operating point of λ̄
as the plant gain vector, and assume a one-step plant delay.

B. Feedback Control

Consider pure I-error feedback control to update each
element of λ̄(t) independently. Each Lagrange multiplier
must be non-negative, hence the actuators are subject to
saturation. Since pure integral control is used, integrator
wind-up protection is easily obtained by using λ̄(t) as
the state of the integral controller. That is, the feedback
controllers are specified by

λ1(t) = max
(
λ1(t− 1)− cI,1e1(t), 0

)
, (29)

λ2,j(t) = max
(
λ2,j(t− 1)− cI,2,je2,j(t), 0

)
, j = 1, . . . ,m, (30)

λ3,j(t) = max
(
λ3,j(t− 1)− cI,3,je3,j(t), 0

)
, j = 2, . . . ,m, (31)

where cI,1, cI,2,j, cI,3,j ∈ R>0 are the controller I gains of each
feedback controller. Adequate values of these gains depend
on the plant gains, which normally are estimated online.
This estimation is outside the scope of this paper, but two
approaches are discussed in [12] and summarized as:



Approach 1: Design an adaptive estimator, e.g. a recursive
least squares algorithm, which based on time series obser-
vations ȳ(t) estimates the elements of ā. This may require
excitation control [12], which is a small random perturbation
of λ̄(t) to ensure identifiability.

Approach 2: Use a large scale machine learning algorithm
to process historical bid prices and context information
offline and fit a prediction model of FB?

i
(b) for the universe

of all targeted impressions. Then use the techniques in
section ’The Mathematics of Plant Smoothing’ on pages 54-
59 in [12] to compute an estimate of the plant gain.

Depending on how challenging the competitive landscape
is for a specific campaign, it may be necessary to implement
bid randomization (aka, Heisenberg bidding) [12] to make
estimation and control possible.

Once λ̄(t) is updated, control signal vector ū(t) is com-
puted from λ̄(t) and ξ̄ according to Corollary 5.1 and made
available for real time bid calculation. Note, λ̄(t) and ū(t)
are computed at sparse discrete time points t while individual
bids bui are computed every time an impression opportunity
is present, which may be billions of times per day.

VII. SIMULATION EXAMPLE

The following example demonstrates the application of
Theorem 5.1, Corollary 5.1, and the proof of concept cam-
paign controller introduced in Section VI.

Suppose the campaign objective is to maximize the ex-
pected cumulative profit from ad-generated conversions (sold
products), where each conversion is worth 10 dollars. Let
C, N1, N2, and N3 denote the spend and the number of
impressions, conversions, and in-target impressions, respec-
tively; where an in-target impression is defined by a specific
context (based on e.g. website and Internet user features).
The objective is subject to a spend constraint ξ1, an effective
cost per impression constraint ξ2,1, an effective cost per
conversion constraint ξ2,2, and an in-target rate constraint
ξ3,3. All constraints are specified on a per day basis, and
the sampling time of the implemented system is ∆ = 5/60
hours; i.e., tmax = 24 · 60/5 = 288. Mathematically, the
problem is

maximize
{bi ∈ R|∀i ∈ Ω}

10EN2 − EC

subject to

EC ≤ ξ1, (32)
EC ≤ ξ2,1EN1, (33)
EC ≤ ξ2,2EN2, (34)

ξ3,3EN1 ≤ EN3. (35)

Suppose all impressions are traded in an auction exchange
and sold according to a first price cost model.

The optimal bids bi,∀i ∈ Ω, depend on the constraints
ξ1, ξ2,1, ξ2,2, and ξ3,3; the event rates p2,i and p3,i; the
competitive landscape FB?

i
(b); and the number of available

impression opportunities (the cardinality of Ω). Assume im-
pression valuation and bid shading optimization are perfect
and consider how campaign controller handles changes in
the constraints. All other aspects of the system are assumed
fixed. The average spend constraint per sampling interval is

denoted ξ̃1, and is given by ξ̃1 = ξ1/288. Let the time-
varying constraints be

ξ̃1 =

 50, t∆ < 200
80, 200 ≤ t∆ < 800
25, t∆ ≥ 800

, ξ2,1 = 4 · 10−4,

ξ2,2 =

{
5, t∆ < 600
3, t∆ ≥ 600

, ξ3,3 =

{
0.8, t∆ < 400
0.9, t∆ ≥ 400

.

The campaign objective translates to an impression value
vi = 10p2,i. Suppose B?

i follows the Gamma(αi, βi) dis-
tribution, where αi is the shape parameter and βi is the
inverse scale parameter [19]. A largest set of impression
opportunities for which vi, p2,i, p3,i, and FB?

i
(b) are fixed

defines a context. Assume, for simplicity, that there are only
four contexts (types) of impressions. Furthermore, suppose
the number of impression opportunities per time interval and
context is constant. Let the contexts be characterized by

Context of i p2,i p3,i αi βi card(Ωi)
1 1 · 10−4 0.2 4.9 3.3 · 103 3 · 105

2 5 · 10−5 0.5 44 4.4 · 104 2 · 105

3 2 · 10−5 0.8 44 5.9 · 104 1 · 105

4 1 · 10−4 0.9 44 1.8 · 105 1.5 · 105

Figure 3 shows visually the shape of the CDF FB?
i
(b) for

each different context. From the shape of the CDFs, it is clear
that the relative standard deviation of the highest competing
bid is much larger for context 1 impressions than it is for
other impression opportunities.

Fig. 3. The CDF FB?
i

(b) of the highest competing bid price. Note, FB?
i

(b)
depends on the context of the ith impression opportunity.

The responsibility of the controller is to update λ1(t),
λ2,1(t) , λ2,2(t), and λ3,3(t) based on the error feedback
signals defined by (26)-(28). These updates are governed by
four separate integral controllers with wind-up protection as
specified by (29)-(31), where the I-gains are chosen largely
ad hoc to be cI,1 = 0.1/ξ̃1, cI,2,j = 0.3/ξ2,j , j = 1, 2, and
cI,3,3 = 10−8/ξ3,3. In a practical implementation, the I-gains
are selected based on our best understanding of the plant
gains, which may be computed according to Approaches 1 or
2 discussed in the previous section. As for the error feedback,
c(t) is the observed spend and nj(t), for j = 1, 2, 3, are the
observed event counts in the most recent time interval.

Figure 4 shows the result of simulating the above closed
loop system for 1000 hours when λ̄(0) is initialized as the
zero vector and there is no un-modeled dynamics and no
noise. Subplot 1,1 displays the bid price for each impression
type, subplot 1,2 shows the overall win rate of impression
opportunities, and subplot 1,3 shows the total ad value. The



Fig. 4. Closed-loop performance of the multi-objective optimization problem using four separate pure I-feedback controllers in a noise-free environment.

other subplots show how errors (26)-(28) and Lagrange mul-
tipliers (29)-(31) evolve over time; and how c(t), c(t)/n1(t),
c(t)/n2(t), and n3(t)/n1(t) compare to ξ̃1, ξ2,1, ξ2,2, and
ξ3,3, respectively.

Initially, the spend rate c(t) and the average cost per
impression c(t)/n1(t) are prohibitively large, while the in-
target rate n3(t)/n1(t) is too small. This triggers the con-
troller to adjust λ1(t), λ2,1(t), and λ3,3(t) to strictly positive
values. However, after a short time and several adjustments,
all Lagrange multipliers settle on constant values where only
the spend constraint ξ̃1 is restricting the delivery. I.e., only
λ1(t) is larger than zero. At time t∆ = 200, budget ξ̃1
is increased, but this larger budget cannot be fully spent
due to the in-target event rate constraint ξ3,3n1(t) ≤ n3(t),
which becomes the only binding constraint. The Lagrange
multipliers settle on a new configuration of constant values
where only λ3,3(t) is larger than zero. The in-target rate
constraint ξ3,3 is increased at time t∆ = 400 causing bids
for context 1, 2, and 3 impressions to drop to a level where
most of the spend is on context 4 impressions with an in-
target rate p3,i = 0.9. The cost per conversion constraint
ξ2,2 is reduced at time t∆ = 600 leading to c(t) =
ξ2,2n2(t) and ξ3,3n1(t) = n3(t) being simultaneously the
only binding constraints. Finally, at t∆ = 800 the budget is
reduced dramatically leading to the spend and in-target rate

constraints being the only two binding constraints.
Based on what constraints are binding, it follows from

Theorem 5.1 that the optimal adjusted impression value bui in
the different time intervals takes the form

bui =



10p2,i

1 + λ1
, t∆ < 200,

10p2,i + (p3,i − ξ3,3)λ3,3, t∆ ∈ [200, 600),

10p2,i + p2,iξ2,2λ2,2 + (p3,i − ξ3,3)λ3,3

1 + λ2,2
, t∆ ∈ [600, 800),

10p2,i + (p3,i − ξ3,3)λ3,3

1 + λ1
, t∆ ≥ 800.

A simpler interface between impression valuation and
campaign control (Figure 2) is obtained by invoking Corol-
lary 5.1, which states that bui = [1, v̄Ti ]ū, where ū ∈ Rm+1

is a rational function of ξ̄ and λ̄. The elements of ū(t) are
plotted in Figure 5. Note that u0(t) in this example is nega-
tive. This illustrates that for some impression opportunities,
in a real application, bui < 0 which is mapped to bopti = 0.
However, B?

i > 0, and no impression is awarded for a bid
that is not strictly positive.



Fig. 5. The elements of ū(t) = [u0, uv , u2, u3]T versus time.

VIII. CONCLUSIONS AND FUTURE WORK

Lagrangian techniques together with probabilistic tools
were used to derive the optimal bidding mechanism to solve
a multi-objective optimization problem in programmatic ad-
vertising. It is demonstrated how the bid calculation lends
itself to a decoupled implementation involving three separate
and scalable systems dealing with impression valuation,
campaign control, and bid shading optimization.

The control system plays a critical role in the implemen-
tation of the optimization system, and enables a scalable and
optimal solution. As a proof of concept, the multiple-input,
multiple-output control problem is implemented as separate
single-input, single-output pure I-error feedback controllers
and evaluated in a noise-free simulated scenario. The closed-
loop performance is according to intuition and theory and
serves as a basic benchmark test case.

The plan for the future is to first of all research algorithms
for robust system identification. Being able to estimate plant
gains, dynamics, time-varying effects, and noise character-
istics is important before the solution can be used in a
fully automated setting. With solid algorithms for system
identification in place, the next step is to refine the control
design.

Theorem 5.1 provides necessary conditions for optimality,
but the objective function and the constraints are not in
general convex, hence there may exist other bids satisfying
the conditions. An important future research problem is to
establish useful conditions that are both necessary and suf-
ficient for optimality, or bounds on how much the expected
surplus is compromised if a suboptimal solution is used.

Another relevant research problem is to relax the as-
sumptions that Nj,i and B?

i , as well as, Vi and B?
i are

conditionally independent, given the context. The assumption

is reasonable in practice at most if the context definition is
granular (rich in features). As privacy concerns are growing
across society, policies and laws are implemented to reduce
what is known about each Internet user and each impres-
sion opportunity. For this reason, the above independence
assumption is not likely to hold true in the future.
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